Global Localization of Energy-Constrained Miniature RF Emitters using Low Earth Orbit Satellites

Yunfan Wang, Steve Young, **Demba Komma,** Jaechan Lim, Zhen Feng, Zichen Fan, Chien-wei Tseng, Hun-Seok Kim, and David Blaauw

21th ACM Conference on Embedded Networked Sensor Systems (SenSys 2023)

Motivation

Daily and global tracking of ~cm objects is an important technique

- It enables many promising applications
 - Small animals (< 10 g) tracking
 - Long-term, inconspicuous safeguarding of valuable asset

Monarchs butterfly

Bee hummingbird

Art works

Existing localization approaches

It is challenging for existing localization approaches to achieve this goal

- **Global tracking**
- Tracker retrieval required

Motus

- cm size
- Tracker retrieval avoided
- Constrained coverage range

MSAIL

- cm size
- **Global tracking**
- Tracker retrieval required

EOS

- Global tracking
- Tracker retrieval avoided
- Only tracks large objects

Proposed system based on LEO satellites

Proposed system

- Cm-size RF tracker for periodic packet transmission
- Low earth orbit (LEO) satellites capture packet, followed by packet detection and localization
- Optimized packet for localization

Proposed system based on LEO satellites

LEO satellite

- Low orbit height: 200 2000 km
- Polar LEO satellites fly over the tracker anywhere on earth once per day
- Localization based on received signal's time/frequency difference of arrival (TDoA/FDoA)

Proposed system based on LEO satellites

- LEO satellites present three advantages over existing approaches
 - Tracker retrieval unnecessary
 - Enables global tracking
 - Miniaturization to cm-size is feasible topic of this paper

Challenges due to cm-size constraint

Challenge 1: Low radiation efficiency of electrical small antenna and high path loss

- Solutions: frequency selection and customized antenna to maximize received power
- Results: 2.946 GHz operation frequency and 65% radiation efficiency

Challenges due to cm-size constraint

Challenge 2: Limited EIRP and energy due to low instantaneous current and battery capacity

- Solutions: waveform optimization to maximize localization accuracy
- Results: 120-ms and 50 kHz BPSK sequence with 23-dBm EIRP and 60-s interval

Challenges due to cm-size constraint

- Challenge 3: Sharp cost function and intra-packet Doppler drift due to long packet length
 - Solutions: Localization based on TDoA error maps and intra-packet Doppler calibration
 - Results: 1000x computation cost reduction and 3x localization accuracy enhancement

Frequency selection and customized antenna

Constraints

- We were free to choose operating frequency among available satellite reception bands
- The tracker antenna footprint was limited to 1 cm x 1 cm (electrically-small in all bands)
- We assumed no control over tracker orientation after deployment: low-gain, omni-directional radiation patterns are better to maximize detection probability

Frequency tradeoffs

- Lower frequencies have smaller free-space path loss (scaling with λ^{-2})
- Lower frequencies have much worse radiation efficiency (scaling with λ^{-4})
- Electrically-small antennas also have narrower bandwidth and more challenging impedance matching

Frequency selection and customized antenna

Custom antenna design

- Self-resonant loop with integrated impedance matching
- 1 cm x 1 cm footprint
- Operating frequency in S-band (2.946 GHz)
- 20 MHz bandwidth
- 65% radiation efficiency
- 1 dB peak gain

Waveform optimization

Constraints

- Transmitter bandwidth is limited by satellite receiver capability
- Tracker's energy is bound by battery capacity, supply voltage and DC-to-RF efficiency

> Modulation type and modulation rate (B_s)

- Modulation type has negligible impact on localization accuracy
 - BPSK is suitable for coherent packet detection
- Larger modulation rate (B_s) provides better time resolution (scaling with B_s^{-1})
 - Maximum modulation rate (50 kHz) is set by receiver's bandwidth

$$2D_{c} + 2B_{s} = \frac{f_{s}/2}{Doppler ranges}$$
 Signal's bandwidth DC-Edge of receiver
(2 x 75 kHz) (2 x 50 kHz) (500/2 kHz)

Waveform optimization

Constraints

- Transmitter bandwidth is limited by satellite receiver capability
- Tracker's energy is bound by battery capacity, supply voltage and DC-to-RF efficiency

Packet length (τ) tradeoffs

- Larger τ enables better frequency resolution (scaling with τ^{-1})
- Larger τ introduces more noise in cost function (scaling with τ)

Optimal packet length

120-ms based on single packet localization

Waveform optimization

Constraints

- Transmitter bandwidth is limited by satellite receiver capability
- Tracker's energy is bound by battery capacity, supply voltage and DC-to-RF efficiency

Packet interval (T) tradeoffs

- Larger T enables larger single packet energy (scaling with T)
- Larger T results in fewer packets captured (scaling with T^{-1})
- Optimal packet interval
 - 60-s based on multi packet localization

Conventional coarse localization approach

- Direct position calculation using TDoA has high localization error due to weak packets
- Grid search with large spacing is not effective with sharp cost function of long packet

Proposed coarse localization approach

- Calculation of error between observed and estimated TDoA
 - Observed TDoA: Based on time indexes in packet detection

Conventional coarse localization approach

- Direct position calculation using TDoA has high localization error due to weak packets
- Grid search with large spacing is not effective with sharp cost function of long packet

Proposed coarse localization approach

- Calculation of error between observed and estimated TDoA
 - Observed TDoA: Based on time indexes in packet detection
 - Estimated TDoA: Based on distance between satellites and tracker

Conventional coarse localization approach

- Direct position calculation using TDoA has high localization error due to weak packets
- Grid search with large spacing is not effective with sharp cost function of long packet

Proposed coarse localization approach

- Calculation of error between observed and estimated TDoA
 - Observed TDoA: Based on time indexes in packet detection
 - Estimated TDoA: Based on distance between satellites and tracker
 - TDoA error calculation and grid selection

Intra-packet Doppler calibration

Constraint

- Adequate single packet energy $(EIRP \cdot \tau)$ for packet detection
- Low EIRP results in long packets (e.g., 120 ms)

Conventional model

Received signal with constant Doppler (f)

Intra-packet Doppler calibration

Constraint

- Adequate single packet energy $(EIRP \cdot \tau)$ for packet detection
- Low EIRP results in long packets (e.g., 120 ms)

Proposed model

Received signal with linear intra-packet Doppler calibration (d)

Intra-packet Doppler calibration

Constraint

- Adequate single packet energy $(EIRP \cdot \tau)$ for packet detection
- Low EIRP results in long packets (e.g., 120 ms)

Proposed model

Based on single-packet localization simulation, it enhances localization accuracy by 3 X

Real-World experiments

Real-world experiments were carried out at three satellite elevations

- Overhead (85 degrees), medium (75 degrees), and low (58 degrees) elevation
- Tx setup
 - Tx USRP + PA + loop antenna: transmit optimized BPSK packet
 - Monitor: record packet transmission to confirm packet transmission
- Packet detection on the satellites (example)
 - Prominent peaks (after correlation) can be observed on three satellites
 - Successful packet detection

Results

- Example outputs for three elevation angles
- Smooth merit over large areas
- ~1000x computation cost reduction

Coarse-to-Fine localization

Results

- Example outputs for three elevation angles
- ~2 km grid space for coarse localization
- ~200 m grid space for fine localization
- Non-smooth and sharp cost function can be observed

Statistics of localization accuracy experiments

Localization error v.s. average peak elevation

- Summary of real-word experiments
 - Three flyovers at low, medium, and high elevation angles
 - ~10 trials of localization at each elevation
 - Mean localization error (320m 840 m) and standard deviation (230 m 558 m)
- Simulation and measurement show consistence

Comparison

> Comparison among LEO satellites localization

State-of-art real-word localization performance with 15-dB lower EIRP and 3x lower energy

	C. Danie et al	M. Murrian et al	Z. Clements et al	P. Ellis et al	Proposed technique	
Size constraint	N/A	N/A	N/A	N/A	cm-size	-
Signal type (Bandwidth)	GMSK 3.84 kHz	GNSS jammer	GNSS jammer	BPSK 2.4 kHz	BPSK 50 kHz	
TX EIRP	37.97 dBm	49 dBm	N/A ^a	N/A	23 dBm	
Packet energy	62.5 mJ ^b	790 mJ	N/A	N/A	24 mJ	
RX power	-112.9 dBm	-107 dBm	N/A	-125 dBm	-132 dBm	a. strong GNSS
Packet length (Interval)	N/A	Continuous	Continuous	Continuous	120 ms (60 s)	signal jammer/spoofer b. Assume packet length is 10 ms. c. Ground truth
Algorithm	TDoA	Doppler time history	Doppler time history	Doppler time history	TDoA , intra- packet Doppler	
Accuracy (Sim.)	100-200 m	N/A ^C	N/A	10 m	70-239 m	position unknown
Accuracy (Meas.)	N/A	N/A	800 m	10 km	320 – 840 m	-

Comparison

> Comparison among LEO satellites localization

State-of-art real-word localization performance with 15-dB lower EIRP and 3x lower energy

	C. Danie et al	M. Murrian et al	Z. Clements et al	P. Ellis et al	Proposed technique	
Size constraint	N/A	N/A	N/A	N/A	cm-size	-
Signal type (Bandwidth)	GMSK 3.84 kHz	GNSS jammer	GNSS jammer	BPSK 2.4 kHz	BPSK 50 kHz	
TX EIRP	37.97 dBm	49 dBm	N/A ^a	N/A	23 dBm	-
Packet energy	62.5 mJ ^b	790 mJ	N/A	N/A	24 mJ	
RX power	-112.9 dBm	-107 dBm	N/A	-125 dBm	-132 dBm	a. strong GNSS
Packet length (Interval)	N/A	Continuous	Continuous	Continuous	120 ms (60 s)	signal jammer/spoofer b. Assume packet length is 10 ms. c. Ground truth position unknown
Algorithm	TDoA	Doppler time history	Doppler time history	Doppler time history	TDoA , intra- packet Doppler	
Accuracy (Sim.)	100-200 m	N/A ^C	N/A	10 m	70-239 m	
Accuracy (Meas.)	N/A	N/A	800 m	10 km	320 – 840 m	-

Comparison

> Comparison among LEO satellites localization

State-of-art real-word localization performance with 15-dB lower EIRP and 3x lower energy

	C. Danie et al	M. Murrian et al	Z. Clements et al	P. Ellis et al	Proposed technique	
Size constraint	N/A	N/A	N/A	N/A	cm-size	-
Signal type (Bandwidth)	GMSK 3.84 kHz	GNSS jammer	GNSS jammer	BPSK 2.4 kHz	BPSK 50 kHz	
TX EIRP	37.97 dBm	49 dBm	N/A ^a	N/A	23 dBm	-
Packet energy	62.5 mJ ^b	790 mJ	N/A	N/A	24 mJ	-
RX power	-112.9 dBm	-107 dBm	N/A	-125 dBm	-132 dBm	a. strong GNSS
Packet length (Interval)	N/A	Continuous	Continuous	Continuous	120 ms (60 s)	signal jammer/spoofer b Assume packet
Algorithm	TDoA	Doppler time history	Doppler time history	Doppler time history	TDoA , intra- packet Doppler	length is 10 ms. c. Ground truth
Accuracy (Sim.)	100-200 m	N/A ^C	N/A	10 m	70-239 m	position unknown
Accuracy (Meas.)	N/A	N/A	800 m	10 km	320 – 840 m	-

Summary and future work

Summary

- Frequency selection and high efficiency customized 1x1 cm antenna
- Systematic wave optimization for localization accuracy enhancement
- Low-complexity coarse localization based on TDoA error maps
- Intra-packet Doppler calibration
- Three real-word satellites flyover tests
- Foundation for cm-size tracker implementation in CMOS

Future work

CMOS cm-size tracker implementation and test

